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Related Works
Our work involves elements from forecasting from spatiotem-
poral data, long-term time series forecasting, and physics-
informed modeling of spatiotemporal data. In the following
subsections, we discuss related works in each domain in rela-
tion to our work.

Forecasting From Spatiotemporal Data
In recent years, methods based on Graph Neural Networks
(GNNs) have shown superior performance in forecasting tasks
from spatiotemporal data in various domains including physi-
cal simulation [Kipf et al., 2018; Huang et al., 2020], traffic [Li
et al., 2018; Wu et al., 2019; Wu et al., 2020; Yu et al., 2018;
Zheng et al., 2020; Cao et al., 2020], human motion [Yan
et al., 2018; Kipf et al., 2018; Huang et al., 2020], and cli-
mate [Seo et al., 2020; Iakovlev et al., 2020]. GNN-based
methods typically utilize recurrent neural networks or one-
dimensional convolution neural networks to capture temporal
dependencies, and message passing or graph convolutions to
model spatial dependencies. While existing works achieve
state-of-the-art performance on spatiotemporal data with a
single resolution, they lack the modeling of multi-resolution
data. Although data in multiple resolutions can be processed
as extra input features, it is not optimal for fully exploiting the
rich contextual information among resolutions.

Long-Term Time Series Forecasting
One accompanying problem with multi-resolution forecasting
is long-term time series forecasting as multi-step predictions
for coarse temporal resolutions involve long prediction hori-
zons into the future. [Zhou et al., 2021] proposes an efficient
Transformer-based method for modeling long time series in
uni-resolution, while we will demonstrate in this work that
forecasting tasks on multiple resolutions can benefit long-term
prediction performance.

Physics-Informed Modeling of Spatiotemporal Data
As the underlying processes of spatiotemporal data are usually
governed by physics laws, physics-informed methods have
potential to further improve the performance of neural network
models via incorporating inductive bias.

Domain-Specific Knowledge Domain-specific knowledge
provides effective inductive bias for solving problems within
one specific domain. For example, [Wang et al., 2020;

Karpatne et al., 2017] incorporate domain knowledge as reg-
ularizations in deep learning models to improve the perfor-
mance of turbulence simulation and lake temperature predic-
tion respectively. However, when we need a model addressing
spatiotemporal modeling tasks from multiple domains, general
knowledge of dynamic systems needs to be integrated.

Numerical Methods of Solving Ordinary/Partial Differ-
ential Equations (ODEs/PDEs) As the physics laws gov-
erning various spatiotemporal processes can be described
with ODEs and PDEs in similar forms, incorporating nu-
merical methods generally applicable to ODEs and PDEs
can benefit tasks in multiple domains. [Chen et al., 2018;
Rubanova et al., 2019] propose scalable back propagation
methods through numerical ODE solvers and enable the mod-
eling of irregular time series. [Guen and Thome, 2020;
Jiang et al., 2019; Seo et al., 2020] perform convolutions
constrained by numerical PDE solvers and achieve better per-
formance compared to unconstrained convolutions.

Koopman Theory Based Methods Koopman theory is
based on the insight that the state space of a non-linear dy-
namic system can be encoded into an infinite-dimensional
space where the dynamics is linear [Koopman, 1931]. In
practice, people assume the infinite-dimensional space can
be approximated with a finite-dimensional space. The key
problem is then to find a proper pair of encoder/decoder to
map from/to the state space to/from the hidden space.

Traditionally, people construct the encoder/decoder with
hand-crafted functions, such as the identity function in
Dynamic Mode Decomposition (DMD) [Schmid, 2010],
nonlinear functions in Extended DMD (EDMD) [Williams
et al., 2015], and kernel functions in Kernel DMD
(KDMD) [Kevrekidis et al., 2016]. However, hand-crafted
functions may fail to fit complex dynamic systems and are
hard to design without domain-specific knowledge. Thus, re-
cent works [Li et al., 2020; Azencot et al., 2020; Lusch et al.,
2018] construct encoders/decoders using neural networks as
trainable universal approximators. They demonstrate that the
combination of neural networks and Koopman theory achieves
comparable or even higher performance than the Koopman
approximators with hand-crafted mapping functions, while
enjoying the ability to generalize to multiple datasets with the
same design. [Li et al., 2020] further shows that the integration
of Koopman theory allows the model to adapt to new systems
with unknown dynamics faster than pure neural networks.



Datasets
Here we introduce the method to construct multi-resolution
datasets used in our experiments from raw data in a single
resolution. We have attached the constructed datasets to the
supplementary material.

YellowCab & GreenCab We construct the YellowCab and
GreenCab datasets with the NYCTaxi Trip Record Data1 be-
tween the year 2017 and 2019, which contains the yellow and
green taxi trip records including fields of pick-up/drop-off
times and locations. The pick-up/drop-off times are precise,
while the locations are discrete values from a pre-defined set
of regions2.

To construct one dataset, we first divide the whole time
range (3 years) into time windows of equal size, then for each
time window and each region, we count the total number of
trips starting/ending within the time window and the region as
the pick-up/drop-off numbers. The taxi demand forecasting
task is to predict the pick-up and drop-off numbers of each
time window and each region into the future. We construct two
datasets with the yellow and green taxi trip records respectively
as YellowCab and GreenCab. Following the practice in [Yao
et al., 2019], we choose a 30-minute time window as the finest
temporal resolution.

We construct the spatial graph among regions as follows:
an undirected edge (i, j) exists iff the average number of trips
between the i-th region and the j-th region is at least 1 in 6
hours. The graph contains 1607/374 undirected edges among
regions for YellowCab/GreenCab respectively.

We choose [6-hour, 1-day] as additional coarser temporal
resolutions, and the New York City United Hospital Fund
Neighborhoods (UHF42) as an additional coarser spatial res-
olution. Figure 1a and Figure 1b visualize the two levels of
spatial resolutions of YellowCab and GreenCab.

Solar Energy We construct the Solar Energy dataset with
National Renewable Energy Laboratory (NREL)’s solar photo-
voltaic (PV) power plant data points for the state of Alabama
in the United States representing the year 20063. The dataset
contains 5-minute power output of 137 solar power plants in
Alabama. We follow the practice in [Lai et al., 2018] and
select the 10-minute time window as the finest temporal res-
olution: the whole time range is divided into 10-minute time
windows and the value of each time window is the summation
of values falling into it from the original data.

We build the spatial graph’s adjacency matrix among re-
gions (power plants) using the Gaussian kernel with a thresh-
old: Wi,j = di,j if di,j >= κ else 0, where di,j =

exp (−dist(vi,vj)
2

σ2 ), dist(vi, vj) is the straight line distance
from plant vi to plant vj , σ is the standard deviation of dis-
tances and κ is the threshold. We set κ = 0.95 for the Solar
Energy dataset. The constructed graph has 967 directed edges
(including self loops).

We choose [1-hour, 6-hour] as additional coarser temporal
resolutions, and we cluster all plants into 10 groups as the

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
2https://s3.amazonaws.com/nyc-tlc/misc/taxi+ zone lookup.csv
3https://www.nrel.gov/grid/assets/downloads/al-pv-2006.zip

additional coarser spatial resolution using KMeans. Figure 1c
shows the spatial resolutions of Solar Energy.

Experimental Details
Baselines
We compare our model ST-KMRN with the following base-
lines: (1) Historical Averaging (HA): We use the averaged
value of historical frames with the 1-week period as the pre-
diction. (2) Static: We use the value from the last available
frame in the input sequence with the 1-week period as the
prediction. (3) Gated Recurrent Unit (GRU) [Chung et al.,
2014] A sequence-to-sequence model with GRU as the archi-
tecture for its encoder and decoder. (4) Informer [Zhou et
al., 2021] : An efficient Transformer-based model with sparse
attention mechanism. , which shows state-of-the-art results on
long-sequence time series forecasting tasks but does not ex-
plicitly involve spatial correlations. (5) Graph WaveNet [Wu
et al., 2019] : A spatiotemporal forecasting model combining
temporal convolutional networks and graph convolutional net-
works. , which demonstrates compelling results on short-term
forecasting tasks. (6) MTGNN [Wu et al., 2020] : An im-
proved version of Graph WaveNet, where the graph structure
is inferred from data as well as constructed with prior knowl-
edge. (7) KoopmanAE [Azencot et al., 2020] : A Koopman
theory-informed method for modeling multivariate time series.

As all baseline methods are originally designed for process-
ing data with a single resolution, we preprocess the data as
follows: First, we expand data in coarser temporal resolutions
to the finest resolution by repeating each element along the
temporal dimension. Then we concatenate data in all temporal
resolutions to a multivariate time series as the input/label for
training and evaluating baselines.

We have tried applying other recent short-term spatiotempo-
ral forecasting works such as AGCRN, GMAN, and DGCRN
on our tasks. However, since all the three works are developed
and evaluated for short sequence forecasting , their methods
and implementation are not optimized for long sequential
data: AGCRN and DGCRN adopts conv-lstm-like architec-
tures and GMAN utilize attention among time steps, inducing
high computation and memory complexity on long sequential
data. AGCRN’s and GMAN’s memory requirement exceeds
the maximum memory size of our GPUs (RTX 2080Ti, 12GiB)
even when trained with only 1 batch, while DGCRN takes
more than 1 hour to finish training on 1 epoch, prohibiting us
from retrieving results with reasonable hardware and amounts
of time.

We provide codes and commands for running all baselines
in the README.md file inside the code folder. Codes of base-
lines are from the following repositories provided by authors,
and we made necessary modifications to enable baselines to
load multi-resolution datasets.

• GRU & Informer: https://github.com/zhouhaoyi/
Informer2020/tree/a732c5dbe7. We use the stable ver-
sion released at the starting time of this project.

• Graph WaveNet: https://github.com/nnzhan/Graph-
WaveNet.

• MTGNN: https://github.com/nnzhan/MTGNN.



(a) YellowCab (b) GreenCab (c) Solar Energy

Figure 1: Visualization of spatial resolutions. In Figure 1a and Figure 1b, each block bounded with black is one taxi zone in the finer spatial
resolution while blocks with the same color is one UHF42 region in the coarser spatial resolution. The geometric centers of blocks are used to
build graphs. In Figure 1c, each point is the location of one power plant in the finer spatial resolution, and points with the same color is one
cluster in the coarser spatial resolution. Stars are clustering centers.

Training Settings
Datasets and Tasks Table 1 shows statistics and task set-
tings of each dataset. We use sliding windows with strides to
generate input/output sequence pairs ordered by starting time.
Each pair is one data sample. Then we divide all samples into
train/validation/test sets with the ratio 60%/20%/20%. Table 2
shows details of data splits of each dataset.

YellowCab GreenCab Solar Energy

time step size 30min 30min 10min

# time steps 52560 52560 52560

temporal
resolutions [30min, 6h, 1d] [30min, 6h, 1d] [10min, 1h, 6h]

# spatial regions 67 76 137

# agg regions 11 12 10

input seq lengths [1440, 120, 30] [1440, 120, 30] [1440, 240, 40]

target temporal
resolution 30min 30min 10min

output seq length 480 480 432

max output horizon 10 days 10 days 3 days

target spatial
resolution spatial regions spatial regions agg regions

Table 1: Datasets and tasks.

YellowCab GreenCab Solar Energy

time step size 30min 30min 10min
# stride 48 (24 hours) 48 (24 hours) 36 (6 hours)

# train samples 618 618 825
# valid samples 210 210 281
# test samples 210 210 281

Table 2: Details of data splits.

Hyperparameters We provide commands for reproducing
results of all baselines and ST-KMRN in the README.md
file in our code folder, including hyperparameters used in all
experiments. Table 3 summarizes some important hyperparam-
eters used in experiments. For all models, we finetune learning
rates in {1e-4, 1e-3, 1e-2} based on their performance on the
validation data.

YellowCab GreenCab Solar Energy

batch size 2 2 2
epochs 150 150 150

learning rate
(Koopman module) 1e-4 1e-4 1e-4

weight decay
(Koopman module) 0 0 0

learning rate
(all parts except

Koopman module)
1e-3 1e-3 1e-3

weight decay
(all parts except

Koopman module)
1e-4 1e-4 1e-4

loss function L1 loss L2 loss L2 loss

Table 3: Hyperparameters of ST-KMRN.

Computing Resources and Costs Each experiment is con-
ducted with one RTX 2080 Ti GPU with 12GB memory. Ta-
ble 4 shows the running time of one round experiment of
ST-KMRN.

YellowCab GreenCab Solar Energy

running time 3h 52min 4h 32min 5h 33min

Table 4: Running time of ST-KMRN.



Time Complexity and Scalability Time complexity of ST-
KMRN is O(kLin |V |2+k2+kLout), where k is the number
of temporal resolutions, |V | is the total number of nodes in the
spatial hierarchical graph, Lin and Lout are the lengths of in-
put and output sequences. On the YellowCab dataset, training 1
epoch takes 357/458/188/69/52/172s for GRU/Informer/Graph
WaveNet/MTGNN/KoopmanAE/ST-KMRN respectively. For
large-scale datasets with increased k and |V |, we can integrate
techniques such as sparse attention and neighbor sampling.

Additional Experimental Results
Long-Sequence Forecasting Results With Fully
Observed Input Within Multiple Horizons
Table 5 demonstrates results of forecasting from fully ob-
served data within multiple horizons. On all of 3 datasets,
ST-KMRN outperforms baselines in most horizons, demon-
strating the advantage of ST-KMRN in long-sequence fore-
casting with multi-resolution data.

Long-Sequence Forecasting Results With Partially
Observed Input on GreenCab and Solar Energy
Here we provide the results of forecasting with missing data in
input sequences on the GreenCab (Table 6a) and Solar Energy
(Table 6b) datasets. Note that we here simulate the practical
scenario where data of the highest temporal resolution and
the highest spatial resolution suffers from missing while data
of other resolutions are fully observed. Since the forecasting
task from Solar Energy focuses on the lower spatial resolu-
tion, its input from the same resolution is still fully observed
and thus the results of HA and Static do not vary with the
observation ratios. Similar to results on YellowCab, the results
on GreenCab and Solar Energy demonstrate the advantage of
ST-KMRN with partially observed input.

Effect of the number of resolutions on the
performance.
We evaluate the effect of the number of temporal resolutions
on the prediction performance with the YellowCab dataset.
Results are shown in Table 7. We find that when the number
of available temporal resolutions is reduced gradually from the
most coarse resolution, the prediction errors (MAE/RMSE)
increase by 12.47%/6.98% (for 1 resolution) and 5.95%/3.27%
(for 2 resolutions) respectively for the prediction into future 30
minutes. However, prediction performance for longer terms
(6h/1d/10d) does not differ significantly. Results demonstrate
that the increase of the number of resolutions in observations
will benefit short-term prediction performance.
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Horizon 30min 6h 1d 10d
Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE

HA 19.43 30.04 10.71 19.89 21.57 34.68 21.93 35.47
Static 12.50 21.87 6.95 14.78 13.45 25.00 14.00 26.32
GRU 22.69(1.85) 32.98(3.09) 14.75(0.67) 21.99(1.13) 25.57(0.15) 38.34(0.52) 25.62(0.19) 38.21(0.18)

Informer 20.24(1.15) 28.78(1.77) 14.45(0.62) 23.11(0.68) 21.49(1.83) 32.10(2.36) 22.21(2.05) 33.48(2.72)
Graph WaveNet 20.26(0.84) 32.42(0.28) 11.98(0.22) 26.11(0.46) 16.45(0.08) 30.16(0.13) 16.89(0.12) 30.93(0.26)

MTGNN 22.26(1.17) 38.32(1.76) 12.37(0.49) 28.58(0.79) 18.28(0.63) 33.22(0.99) 18.91(0.59) 34.02(0.98)
KoopmanAE 15.45(0.35) 24.11(0.65) 10.31(0.34) 16.92(0.75) 16.71(0.50) 27.20(0.65) 16.92(0.68) 28.11(0.89)
ST-KMRN 12.27(0.64) 18.06(0.47) 7.53(0.60) 13.73(0.99) 13.32(0.92) 23.07(1.32) 13.63(0.81) 24.09(1.05)

RelErr -1.8% -17.4% 8.3% -7.1% -1.0% -7.7% -2.6% -8.5%
RelErrGW -39.4% -44.3% -37.1% -47.4% -19.0% -23.5% -19.3% -22.1%

(a) YellowCab
Horizon 30min 6h 1d 10d
Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE

HA 4.37 6.62 3.25 5.67 3.74 5.67 3.76 5.70
Static 1.95 2.79 1.58 2.29 2.07 3.06 2.08 3.08
GRU 3.54(0.19) 5.17(0.32) 2.33(0.14) 3.52(0.23) 2.67(0.06) 3.89(0.09) 2.67(0.06) 3.89(0.08)

Informer 1.80(0.05) 2.60(0.05) 1.51(0.07) 2.18(0.08) 1.84(0.05) 2.73(0.07) 1.93(0.06) 2.82(0.08)
Graph WaveNet 1.79(0.03) 2.68(0.03) 1.54(0.04) 2.43(0.05) 1.80(0.01) 2.78(0.02) 1.80(0.01) 2.79(0.02)

MTGNN 2.26(0.02) 3.33(0.01) 1.87(0.01) 2.94(0.02) 2.22(0.02) 3.46(0.01) 2.22(0.02) 3.46(0.01)
KoopmanAE 2.35(0.32) 3.30(0.41) 1.65(0.04) 2.36(0.09) 2.79(0.09) 4.12(0.14) 2.61(0.13) 3.83(0.20)
ST-KMRN 1.61(0.04) 2.37(0.05) 1.30(0.03) 2.04(0.07) 1.65(0.01) 2.46(0.01) 1.68(0.00) 2.48(0.02)

RelErr -10.1% -8.8% -13.9% -6.4% -8.3% -9.9% -6.7% -11.1%
RelErrGW -10.1% -11.6% -15.6% -16.0% -8.3% -11.5% -6.7% -11.1%

(b) GreenCab
Horizon 10min 1h 6h 3d
Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE

HA 53.1 143.3 62.5 147.6 68.7 151.9 69.4 152.6
Static 63.1 188.3 63.8 185.7 71.0 179.2 71.8 179.7
GRU 93.2(3.9) 148.0(4.5) 106.1(4.1) 169.4(4.6) 110.1(12.2) 195.6(14.8) 114.7(9.0) 201.6(10.5)

Informer 68.8(4.1) 148.7(6.1) 62.5(1.2) 140.2(5.7) 79.1(5.0) 161.6(11.0) 81.5(5.2) 171.4(10.1)
Graph WaveNet 124.9(0.2) 310.1(0.2) 123.0(0.3) 301.4(0.3) 136.3(0.1) 291.5(0.3) 135.6(0.1) 290.5(0.2)

MTGNN 117.2(5.8) 296.9(10.5) 115.0(5.7) 288.9(10.2) 129.7(4.8) 282.6(7.3) 130.4(3.5) 283.5(5.7)
KoopmanAE 151.4(3.0) 276.0(0.7) 149.9(1.7) 267.9(0.5) 147.3(1.6) 253.0(0.3) 148.6(2.3) 253.1(0.4)
ST-KMRN 45.4(1.1) 118.9(1.9) 44.5(0.1) 121.9(1.0) 64.3(1.3) 140.1(2.0) 67.7(1.6) 148.3(2.3)

RelErr -14.5% -17.0% -28.8% -13.1% -6.4% -7.8% -2.4% -2.8%
RelErrGW -63.7% -61.7% -63.8% -59.6% -52.8% -51.9% -50.1% -49.0%

(c) Solar Energy

Table 5: Forecasting results within multiple horizons from fully observed input sequences. The lowest error is marked in bold
and the second-lowest error in italic with underline. The row ”RelErr” shows the relative error change to the best baseline model
and ”RelErrGW” to the Graph WaveNet baseline.



Obs Ratio 0.8 0.6 0.4 0.2
Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE

HA 3.76 5.70 3.77 5.71 3.77 5.73 3.79 5.78
Static 2.08 3.09 2.14 3.17 2.40 3.47 3.09 4.18
GRU 2.67(0.04) 3.90(0.07) 2.66(0.04) 3.89(0.07) 2.67(0.03) 3.90(0.05) 2.67(0.05) 3.91(0.08)

Informer 1.96(0.07) 2.88(0.10) 2.03(0.07) 2.95(0.08) 2.03(0.02) 2.99(0.07) 2.08(0.05) 3.00(0.07)
Graph WaveNet 1.77(0.01) 2.75(0.00) 1.79(0.03) 2.78(0.05) 1.80(0.02) 2.79(0.01) 1.82(0.01) 2.84(0.02)

MTGNN 2.09(0.11) 3.24(0.15) 2.21(0.08) 3.46(0.06) 2.21(0.04) 3.43(0.03) 2.23(0.01) 3.50(0.07)
KoopmanAE 2.78(0.55) 4.01(0.72) 2.94(0.44) 4.24(0.50) 2.97(0.45) 4.23(0.50) 2.95(0.50) 4.26(0.59)
ST-KMRN 1.73(0.02) 2.51(0.03) 1.72(0.04) 2.53(0.03) 1.68(0.03) 2.47(0.04) 1.68(0.04) 2.47(0.04)

RelErr -2.3% -8.7% -3.9% -9.0% -6.7% -11.5% -7.7% -13.0%
RelErrGW -2.3% -8.7% -3.9% -9.0% -6.7% -11.5% -7.7% -13.0%

(a) GreenCab
Obs Ratio 0.8 0.6 0.4 0.2

Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE
HA 200.7 255.2 200.7 255.2 200.7 255.2 200.7 255.2

Static 261.1 409.7 261.1 409.7 261.1 409.7 261.1 409.7
GRU 118.3(8.7) 204.2(11.3) 118.5(12.8) 206.0(14.8) 113.9(8.7) 200.4(11.0) 111.8(6.0) 192.1(5.2)

Informer 91.5(3.0) 186.5(7.2) 90.8(1.0) 182.0(3.8) 86.7(5.3) 177.4(8.1) 97.8(7.2) 188.8(5.4)
Graph WaveNet 135.6(0.0) 290.7(0.1) 135.7(0.1) 290.6(0.1) 135.7(0.1) 290.6(0.1) 135.7(0.0) 290.5(0.1)

MTGNN 122.9(8.8) 268.2(16.7) 79.9(5.3) 167.6(19.7) 106.1(25.3) 225.7(62.3) 107.2(21.4) 233.5(45.2)
KoopmanAE 147.5(0.7) 252.8(0.3) 152.0(7.3) 253.9(1.8) 147.8(0.6) 252.9(0.2) 146.9(1.7) 252.7(0.5)
ST-KMRN 68.3(1.3) 148.0(4.0) 67.9(2.1) 145.6(4.0) 68.1(1.8) 149.0(2.8) 72.3(2.8) 157.7(5.6)

RelErr -25.4% -20.6% -15.0% -13.1% -21.5% -16.0% -26.1% -16.5%
RelErrGW -49.6% -49.1% -50.0% -49.9% -49.8% -48.7% -46.7% -45.7%

(b) Solar Energy

Table 6: Forecasting results with partially observed input (Horizon=10d).

30min 6h 1d 10d
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

1 Res 13.80(0.22)
+12.47%

19.32(0.32)
+6.98%

7.66(0.20)
+1.73%

12.88(0.18)
-6.19%

13.25(0.64)
-0.53%

22.68(0.92)
-1.69%

13.47(0.64)
-1.17%

23.66(0.88)
-1.78%

2 Res 13.00(0.87)
+5.95%

18.65(0.44)
+3.27%

8.40(1.52)
+11.55%

13.78(0.97)
+0.36%

13.58(0.36)
+1.95%

22.91(0.17)
-0.69%

13.95(0.51)
+2.35%

23.98(0.34)
-0.46%

3 Res 12.27(0.64) 18.06(0.47) 7.53(0.60) 13.73(0.99) 13.32(0.92) 23.07(1.32) 13.63(0.81) 24.09(1.05)

Table 7: Effect of the number of resolutions on prediction performance.
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